CrossMark

On the bottom of spectra under coverings

Werner Ballmann^{1,2} · Henrik Matthiesen^{1,2} · Panagiotis Polymerakis³

Received: 9 January 2017 / Accepted: 16 July 2017 / Published online: 30 September 2017 © The Author(s) 2017. This article is an open access publication

Abstract For a Riemannian covering $M_1 \to M_0$ of connected Riemannian manifolds with respective fundamental groups $\Gamma_1 \subseteq \Gamma_0$, we show that the bottoms of the spectra of M_0 and M_1 coincide if the right action of Γ_0 on $\Gamma_1 \setminus \Gamma_0$ is amenable.

Keywords Bottom of spectrum · Amenable covering

Mathematics Subject Classification 58J50 · 35P15 · 53C99

1 Introduction

In this article, we study the behaviour under coverings of the bottom of the spectrum of Schrödinger operators on Riemannian manifolds.

Let *M* be a connected Riemannian manifold, not necessarily complete, and $V: M \to \mathbb{R}$ be a smooth potential with associated *Schrödinger operator* $\Delta + V$. We consider $\Delta + V$ as an unbounded symmetric operator in the space $L^2(M)$ of square integrable functions on *M* with domain $C_c^{\infty}(M)$, the space of smooth functions on *M* with compact support.

Henrik Matthiesen hematt@mpim-bonn.mpg.de

Panagiotis Polymerakis polymerp@hu-berlin.de

¹ Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

² Hausdorff Center for Mathematics, Endenicher Allee 60, 53115 Bonn, Germany

We would like to thank the Max Planck Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn for their support.

[☑] Werner Ballmann hwbllmnn@mpim-bonn.mpg.de

³ Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

For a non-vanishing Lipschitz continuous function on M with compact support in M, we call

$$R(f) = \frac{\int_{M} (|\nabla f|^2 + Vf^2)}{\int_{M} f^2}$$
(1.1)

the Rayleigh quotient of f. We let

$$\lambda_0(M, V) = \inf R(f), \tag{1.2}$$

where f runs through all non-vanishing Lipschitz continuous functions on M with compact support in M. If $\lambda_0(M, V) > -\infty$, then $\Delta + V$ is bounded from below on $C_c^{\infty}(M)$ and $\lambda_0(M, V)$ is equal to the bottom of the spectrum of the *Friedrichs extension of* $\Delta + V$. If $\lambda_0(M, V) = -\infty$, then the spectrum of any self-adjoint extension of $\Delta + V$ is not bounded from below.

Recall that $\Delta + V$ is essentially self-adjoint on $C_c^{\infty}(M)$ if M is complete and inf $V > -\infty$. Then the unique self-adjoint extension of $\Delta + V$ is its closure. In the case where M is the interior of a complete Riemannian manifold N with smooth boundary and where V extends smoothly to the boundary of N, $\lambda_0(M, V)$ is equal to the bottom of the Dirichlet spectrum of $\Delta + V$ on N.

In the case of the *Laplacian*, that is, V = 0, we also write $\lambda_0(M)$ and call it the *bottom* of the spectrum of M. It is well known that $\lambda_0(M)$ is the supremum over all $\lambda \in \mathbb{R}$ such that there is a positive smooth λ -eigenfunction $f: M \to \mathbb{R}$ (see, e.g., [3, Theorem 7], [4, Theorem 1], or [5, Theorem 2.1]). It is crucial that these eigenfunctions are not required to be square-integrable. In fact, $\lambda_0(M)$ is exactly the border between the positive and the L^2 spectrum of Δ (see, e.g., [5, Theorem 2.2]).

Suppose now that M is simply connected and let $\pi_0: M \to M_0$ and $\pi_1: M \to M_1$ be Riemannian subcovers of M. Let Γ_0 and Γ_1 be the groups of covering transformations of π_0 and π_1 , respectively, and assume that $\Gamma_1 \subseteq \Gamma_0$. Then the resulting Riemannian covering $\pi: M_1 \to M_0$ satisfies $\pi \circ \pi_1 = \pi_0$. Let $V_0: M_0 \to \mathbb{R}$ be a smooth potential and set $V_1 = V_0 \circ \pi$.

Since the lift of a positive λ -eigenfunction of Δ on M_0 to M_1 is a positive λ -eigenfunction of Δ , we always have $\lambda_0(M_0) \leq \lambda_0(M_1)$ by the above characterization of the bottom of the spectrum of Δ by positive eigenfunctions. In Sect. 4, we present a short and elementary proof of the inequality which does not rely on the characterization of λ_0 by positive eigenfunctions:

Theorem 1.1 For any Riemannian covering $\pi: M_1 \to M_0$ as above,

$$\lambda_0(M_0, V_0) \le \lambda_0(M_1, V_1).$$

Brooks showed in [2, Theorem 1] that $\lambda_0(M_0) = \lambda_0(M_1)$ in the case where M_0 is complete, has *finite topological type*, and π is *normal* with *amenable* group $\Gamma_1 \setminus \Gamma_0$ of covering transformations. Bérard and Castillon extended this in [1, Theorem 1.1] to $\lambda_0(M_0, V_0) = \lambda_0(M_1, V_1)$ in the case where M_0 is complete, $\pi_1(M_0)$ is finitely generated [this assumption occurs in point (1) of their Section 3.1], and the right action of Γ_0 on $\Gamma_1 \setminus \Gamma_0$ is amenable. We generalize these results as follows:

Theorem 1.2 If the right action of Γ_0 on $\Gamma_1 \setminus \Gamma_0$ is amenable, then

$$\lambda_0(M_0, V_0) = \lambda_0(M_1, V_1).$$

Here a right action of a countable group Γ on a countable set X is said to be *amenable* if there exists a Γ -invariant mean on $L^{\infty}(X)$. This holds if and only if the action satisfies the

Følner condition: For any finite subset $G \subseteq \Gamma$ and $\varepsilon > 0$, there exists a non-empty, finite subset $F \subseteq X$, a *Følner set*, such that

$$|F \setminus Fg| \le \varepsilon |F| \tag{1.3}$$

for all $g \in G$. By definition, Γ is *amenable* if the right action of Γ on itself is amenable, and then any action of Γ is amenable.

In comparison with the results of Brooks, Bérard, and Castillon, the main point of Theorem 1.2 is that we do not need any assumptions on metric and topology of M_0 . A main new point of our arguments is that we adopt our constructions more carefully to the different competitors for λ_0 separately.

2 Fundamental domains and partitions of unity

Choose a complete Riemannian metric h on M_0 . In what follows, geodesics, distances, and metric balls in M_0 , M_1 , and M are taken with respect to h and its lifts to M_1 and M, respectively.

Fix a point x in M_0 . For any $y \in \pi^{-1}(x)$, let

$$D_{y} = \{ z \in M_{1} \mid d(z, y) \le d(z, y') \text{ for all } y' \in \pi^{-1}(x) \}$$
(2.1)

be the *fundamental domain* of π centered at y. Then D_y is closed in M_1 , the boundary ∂D_y of D_y has measure zero in M_1 , and $\pi : D_y \setminus \partial D_y \to M_0 \setminus C$ is an isometry, where C is a subset of the cut locus $\operatorname{Cut}(x)$ of x in M_0 . Recall that $\operatorname{Cut}(x)$ is of measure zero. Moreover, $M_1 = \bigcup_{y \in \pi^{-1}(x)} D_y, y \in \pi^{-1}(x)$.

Lemma 2.1 For any $\rho > 0$, there is an integer $N(\rho)$ such that any z in M_1 is contained in at most $N(\rho)$ metric balls $B(y, \rho)$, $y \in \pi^{-1}(x)$.

Proof Let $z \in B(y_1, \rho) \cap B(y_2, \rho)$ with $y_1 \neq y_2$ in $\pi^{-1}(x)$ and $\gamma_1, \gamma_2: [0, 1] \rightarrow M_1$ be minimal geodesics from y_1 to z and y_2 to z, respectively. Then $\sigma_1 = \pi \circ \gamma_1$ and $\sigma_2 = \pi \circ \gamma_2$ are geodesic segments from x to $\pi(z)$. Since $y_1 \neq y_2$, σ_1 and σ_2 are not homotopic relative to $\{0, 1\}$. Hence, if z lies in in the intersection of n pairwise different balls $B(y_i, \rho)$ with $y_1, \ldots, y_n \in \pi^{-1}(x)$, then the concatenations $\sigma_1^{-1} * \sigma_i$ represent n pairwise different homotopy classes of loops at x of length at most 2ρ . Hence n is at most equal to the number $N(\rho)$ of homotopy classes of loops at x with representatives of length at most 2ρ . \Box

Lemma 2.2 If $K \subseteq M_0$ is compact, then $\pi^{-1}(K) \cap D_y$ is compact. More precisely, if $K \subseteq B(x, r)$, then $\pi^{-1}(K) \cap D_y \subseteq B(y, r)$.

Proof Choose r > 0 such that $K \subseteq B(x, r)$. Let $z \in \pi^{-1}(K) \cap D_y$ and γ_0 be a minimal geodesic from $\pi(z) \in K$ to x. Let γ be the lift of γ_0 to M_1 starting in z. Then γ is a minimal geodesic from z to some point $y' \in \pi^{-1}(x)$. Since $z \in D_y$, this implies

$$d(z, y) \le d(z, y') \le L(\gamma) = L(\gamma_0) < r.$$

Hence $\pi^{-1}(K) \cap D_y \subseteq B(y, r)$.

Let $K \subseteq M_0$ be a compact subset and choose r > 0 such that $K \subseteq B(x, r)$. Let $\psi : \mathbb{R} \to \mathbb{R}$ be the function which is equal to 1 on $(-\infty, r]$, to t + 1 - r for $r \leq t \leq r + 1$, and to 0 on $[r + 1, \infty]$. For $y \in \pi^{-1}(x)$, let $\psi_y = \psi_y(z) = \psi(d(z, y))$. Note that $\psi_y = 1$ on $\pi^{-1}(K) \cap D_y$ and that supp $\psi_y = \overline{B}(y, r + 1)$.

Deringer

Lemma 2.3 Any z in M_1 is contained in the support of at most N(r + 1) of the functions ψ_y , $y \in \pi^{-1}(x)$.

Proof This is clear from Lemma 2.1 since supp ψ_y is contained in the ball B(y, r + 1). \Box

In particular, each point of M_1 lies in the support of only finitely many of the functions ψ_y . Therefore the function $\psi_1 = \max\{1 - \sum \psi_y, 0\}$ is well defined. By Lemma 2.2, we have supp $\psi_1 \cap \pi^{-1}(K) = \emptyset$. Together with ψ_1 , the functions ψ_y lead to a partition of unity on M_1 with functions φ_1 and φ_y , $y \in \pi^{-1}(x)$, given by

$$\varphi_1 = \frac{\psi_1}{\psi_1 + \sum_{z \in \pi^{-1}(x)} \psi_z}$$
 and $\varphi_y = \frac{\psi_y}{\psi_1 + \sum_{z \in \pi^{-1}(x)} \psi_z}$. (2.2)

Note that supp $\varphi_1 = \text{supp } \psi_1$ and supp $\varphi_y = \text{supp } \psi_y$ for all $y \in \pi^{-1}(x)$.

Lemma 2.4 The functions φ_y , $y \in \pi^{-1}(x)$, are Lipschitz continuous with Lipschitz constant 3N(r+1).

Proof The functions $\psi_y, y \in \pi^{-1}(x)$, are Lipschitz continuous with Lipschitz constant 1 and take values in [0, 1]. Hence ψ_1 is Lipschitz continuous with Lipschitz constant N = N(r+1), by Lemma 2.3, and takes values in [0, 1]. Therefore the denominator $\chi = \psi_1 + \sum_{z \in \pi^{-1}(x)} \psi_z$ in the fraction defining the φ_y is Lipschitz continuous and takes values in [1, N]. Hence

$$\begin{aligned} |\varphi_{y}(z_{1}) - \varphi_{y}(z_{2})| &\leq \frac{|(\chi(z_{2}) - \chi(z_{1}))\psi_{y}(z_{1}) + \chi(z_{1})(\psi_{y}(z_{1}) - \psi_{y}(z_{2}))|}{\chi(z_{1})\chi(z_{2})} \\ &\leq \frac{(2N+N)d(z_{1}, z_{2})}{\chi(z_{1})\chi(z_{2})} \leq 3Nd(z_{1}, z_{2}). \end{aligned}$$

As a consequence of Lemma 2.4, we get that $\varphi_1 = 1 - \sum \varphi_y$ is also Lipschitz continuous with Lipschitz constant $6N(r + 1)^2$.

3 Pulling up

Let f be a non-vanishing Lipschitz continuous function on M_0 with compact support and let $f_1 = f \circ \pi$. We will construct a cutoff function χ on M_1 such that $R(\chi f_1)$ is close to R(f).

Let g be the given Riemannian metric on M_0 and h be a complete background Riemannian metric on M_0 as in Sect. 2. Then there is a constant $A \ge 1$ such that

$$A^{-1}g \le h \le Ag \tag{3.1}$$

on the support of f. We continue to take distances and metric balls in M_0 , M_1 , and M with respect to h and its respective lifts to M_1 and M.

Fix a point *x* in M_0 . With K = supp f and r > 0 such that $K \subseteq B(x, r)$, we get a partition of unity with functions φ_1 and φ_y , $y \in \pi^{-1}(x)$, as above.

Fix preimages $u \in M$ and $y = \pi_1(u) \in M_1$ of x under π_0 and π , respectively. Write $\pi_0^{-1}(x) = \Gamma_0 u$ as the union of Γ_1 -orbits $\Gamma_1 gu$, where g runs through a set R of representatives of the right cosets of Γ_1 in Γ_0 , that is, of the elements of $\Gamma_1 \setminus \Gamma_0$. Then $\pi^{-1}(x) = {\pi_1(gu) \mid g \in R}$. Let

$$S = \{s \in R \mid d(y, \pi_1(su)) \le 2r + 2\}$$

= $\{s \in R \mid d(u, tsu) \le 2r + 2 \text{ for some } t \in \Gamma_1\},$
$$T = \{t \in \Gamma_1 \mid d(u, tsu) \le 2r + 2 \text{ for some } s \in S\},$$

$$G = TS \subseteq \Gamma_0.$$

Since the fibres of π and π_0 are discrete, S and T are finite subsets of Γ_0 , hence also G.

Let $\varepsilon > 0$ and $F \subseteq \Gamma_1 \setminus \Gamma_0$ be a Følner set for G and ε satisfying (1.3). Let

$$P = \{g \in R \mid \Gamma_1 g \in F\} \subseteq R$$

and set

$$\chi = \sum_{g \in P} \varphi_{\pi_1(gu)}.$$

Since $|P| = |F| < \infty$, supp χ is compact. Hence, by Lemma 2.4, χf_1 is compactly supported and Lipschitz continuous on M_1 . Let

$$Q = \{ y \in \pi^{-1}(x) \mid (\chi f_1)(z) \neq 0 \text{ for some } z \in D_y \}.$$

To estimate the Rayleigh quotient of χf_1 , it suffices to consider χf_1 on the union of the D_y , $y \in Q$. We first observe that

$$P_1 = \{\pi_1(gu) \mid g \in P\} \subseteq Q.$$

To show this, let $y = \pi_1(gu)$ and observe that f_1 does not vanish identically on $\pi^{-1}(K) \cap D_y$ and that φ_y is positive on $\pi^{-1}(K) \cap D_y$. Since *R* is a set of representatives of the right cosets of Γ_1 in Γ_0 , there exists a one-to-one correspondence between *P* and *P*₁, and hence

$$|P| = |P_1| \le |Q|.$$

The problematic subset of Q is

$$Q_{-} = \{ y \in Q \mid 0 < \chi(z) < 1 \text{ for some } z \in \pi^{-1}(K) \cap D_{y} \}$$

Let now $y \in Q_-$ and $z \in \pi^{-1}(K) \cap D_y$ with $0 < \chi(z) < 1$. Since $\pi_1(gu), g \in R$, runs through all points of $\pi^{-1}(x)$, we have $\sum_{g \in R} \varphi_{\pi_1(gu)}(z) = 1$. Hence there are $g_1, \ldots, g_k \in R \setminus P$ such that $\varphi_{\pi_1(g_iu)}(z) \neq 0$ and

$$\chi(z) + \sum \varphi_{\pi_1(g_i u)}(z) = 1.$$

Furthermore, there has to be a $g \in P$ with $\varphi_{\pi_1(gu)}(z) \neq 0$. Then the supports of the functions $\varphi_{\pi_1(gu)}$ and $\varphi_{\pi_1(g_iu)}$ intersect and we get $d(\pi_1(gu), \pi_1(g_iu)) \leq 2r + 2$. That is, we have $d(gu, h_i g_i u) \leq 2r + 2$ for some $h_i \in \Gamma_1$. We conclude that

$$d(u, g^{-1}h_i g_i u) = d(gu, h_i g_i u) \le 2r + 2.$$

Since π_1 is distance non-increasing, we get that there are $s_i \in S$ and $t_i \in T$ such that $g^{-1}h_ig_i = t_is_i$, and then $h_ig_i = gt_is_i$. Since $g_i \notin P$, we conclude that $\Gamma_1gt_is_i \notin F$, i.e., $\Gamma_1g \in F \setminus F(t_is_i)^{-1}$. Since $(t_is_i)^{-1} \in G$, there are at most $\varepsilon |F||G|$ such elements $g \in P$. Since $d(y, z) \leq r$ and $d(z, \pi_1(gu)) \leq r + 1$, we conclude with Lemma 2.1 that for fixed $g \in P$ there are at most N(2r + 1) such $y \in Q$. We conclude that

$$Q_{-}| \le \varepsilon |F| |G| N(2r+1) = \varepsilon |P| |G| N(2r+1) \le \varepsilon |Q| |G| N(2r+1).$$
(3.2)

Deringer

We now estimate the Rayleigh quotient of χf_1 . For any $y \in Q_+ = Q \setminus Q_-$, we have $\chi = 1$ on $\pi^{-1}(K) \cap D_y$ and therefore

$$\int_{D_y} \{ |\nabla(\chi f_1)|^2 + V_1(\chi f_1)^2 \} = \int_{D_y} \{ |\nabla f_1|^2 + V_1 f_1^2 \}$$
$$= \int_{M_0} \{ |\nabla f|^2 + V_0 f^2 \}$$

and

$$\int_{D_y} \chi^2 f_1^2 = \int_{D_y} f_1^2 = \int_{M_0} f^2,$$

where, here and below, integrals, gradients, and norms are taken with respect to the original Riemannian metric g on M.

For any $y \in Q_-$, we have

$$\int_{D_y} \chi^2 f_1^2 \leq \int_{M_0} f^2 \text{ and } \int_{D_y} |V_1| \chi^2 f_1^2 \leq C_0 \int_{M_0} f^2,$$

where C_0 is the maximum of $|V_0|$ on supp f = K. By Lemma 2.3, Lemma 2.4, and (3.1), we have $|\nabla \chi|^2 \le 9N(r+1)^4 A$ on the support of f. Therefore

$$\int_{D_y} |\nabla(\chi f_1)|^2 \le 2 \int_{D_y} \{ |\nabla \chi|^2 f^2 + \chi^2 |\nabla f \circ \pi|^2 | \}$$
$$\le 18N(r+1)^4 A \int_{M_0} f^2 + 2 \int_{M_0} |\nabla f|^2$$

In conclusion,

$$\int_{D_y} \{ |\nabla(\chi f_1)|^2 + |V_1|\chi^2 f_1^2 \} \le C$$

for any $y \in Q_-$, where C > 0 is an appropriate constant, which depends on f, but not on y or the choice of ε and F. With D = |G|N(2r + 1), we obtain from (3.2) that

$$|Q_{-}| \le \frac{\varepsilon D}{1 - \varepsilon D} |Q_{+}|,$$

and conclude that

$$\begin{split} R(\chi f_1) &= \frac{\int \{ |\nabla(\chi f_1)|^2 + V_1 \chi^2 f_1^2 \}}{\int (\chi f_1)^2} \\ &= \frac{\sum_{y \in \mathcal{Q}} \int_{D_y} \{ |\nabla f_1|^2 + V_1 f_1^2 \}}{\sum_{y \in \mathcal{Q}} \int_{D_y} f_1^2} \\ &\leq \frac{\sum_{y \in \mathcal{Q}_+} \int_{D_y} \{ |\nabla f_1|^2 + V_1 f_1^2 \} + \varepsilon CD |\mathcal{Q}_+| / (1 - \varepsilon D)}{\sum_{y \in \mathcal{Q}_+} \int_{D_y} f_1^2} \\ &= \frac{\int_{M_0} \{ |\nabla f|^2 + V_0 f^2 \} + \varepsilon CD / (1 - \varepsilon D)}{\int_{M_0} f^2} \\ &= R(f) + \frac{\varepsilon CD}{(1 - \varepsilon D) \int_{M_0} f^2}. \end{split}$$

For $\varepsilon \to 0$, the right hand side converges to R(f).

Deringer

Proof of Theorem 1.2 By Theorem 1.1, we have $\lambda_0(M_0, V_0) \leq \lambda_0(M_1, V_1)$. By (1.2), the bottom of the spectrum of Schrödinger operators is given by the infimum of corresponding Rayleigh quotients R(f) of Lipschitz continuous functions with compact support. The arguments above show that, for any such function f on M_0 and any $\delta > 0$, there is a Lipschitz continuous function χf_1 on M_1 with compact support and Rayleigh quotient at most $R(f) + \delta$. Therefore we also have $\lambda_0(M_0, V_0) \geq \lambda_0(M_1, V_1)$.

4 Pushing down

Let f be a Lipschitz continuous function on M_1 with compact support. Define the *push down* $f_0: M_0 \to \mathbb{R}$ of f by

$$f_0(x) = \left(\sum_{y \in \pi^{-1}(x)} f(y)^2\right)^{1/2}$$

Since supp f is compact, the sum on the right hand side is finite for all $x \in M_0$, and hence f_0 is well defined. We have supp $f_0 = \pi(\text{supp } f)$, and hence supp f_0 is compact. Furthermore, f_0 is differentiable at each point x, where f is differentiable at all $y \in \pi^{-1}(x)$ and $f(y) \neq 0$ for some $y \in \pi^{-1}(x)$, and then

$$\nabla f_0(x) = \frac{1}{f_0(x)} \sum_{y \in \pi^{-1}(x)} f(y) \pi_*(\nabla f(y)).$$

For the norm of the differential of f_0 at x, we get

$$\begin{aligned} |\nabla f_0(x)|^2 &\leq \frac{1}{f_0(x)^2} \left| \sum_{y \in \pi^{-1}(x)} f(y) \pi_* (\nabla f(y)) \right|^2 \\ &\leq \frac{1}{f_0(x)^2} \sum_{y \in \pi^{-1}(x)} f(y)^2 \sum_{y \in \pi^{-1}(x)} |\nabla f(y)|^2 \\ &= \sum_{y \in \pi^{-1}(x)} |\nabla f(y)|^2. \end{aligned}$$

Furthermore, f_0 is differentiable with vanishing differential at almost any point of $\{f_0 = 0\}$. Therefore f_0 is Lipschitz continuous and

$$\int_{M_0} f_0^2 = \int_{M_1} f^2, \quad \int_{M_0} V_0 f_0^2 = \int_{M_1} V_1 f^2, \quad \int_{M_0} |\nabla f_0|^2 \le \int_{M_1} |\nabla f|^2.$$

In particular, we have $R(f_0) \leq R(f)$.

Proof of Theorem 1.1 For any non-vanishing Lipschitz continuous function f on M_1 with compact support, the push down f_0 as above is a Lipschitz continuous function on M_0 with compact support and Rayleigh quotient $R(f_0) \le R(f)$. The asserted inequality follows now from the characterization of the bottom of the spectrum by Rayleigh quotients as in (1.2). \Box

5 Final remarks

It is well-known that any countable group is the fundamental group of a smooth four-manifold. (A variant of the usual argument for finitely presented groups, taking connected sums of $S^1 \times S^3$ and performing surgeries, can be used to produce five-manifolds with fundamental group any countable group.) In particular, for a non-finitely generated, amenable group G, e.g., $G = \bigoplus_{n \in \mathbb{N}} \mathbb{Z}$ or $G = \mathbb{Q}$, there is a smooth manifold M with $\pi_1(M) \cong G$. In contrast to the results in [1,2], our main result also applies to such examples.

Moreover, we do not assume $\lambda_0(M_0, V_0) > -\infty$. Given any non-compact manifold M_0 , it is indeed easy to construct a smooth potential V_0 such that $\lambda_0(M_0, V_0) = -\infty$. In fact, it suffices that $V_0(x)$ tends to $-\infty$ sufficiently fast as $x \to \infty$.

Acknowledgements Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Bérard, P., Castillon, P.: Spectral positivity and Riemannian coverings. Bull. Lond. Math. Soc. 45(5), 1041–1048 (2013)
- Brooks, R.: The bottom of the spectrum of a Riemannian covering. J. Reine Angew. Math. 357, 101–114 (1985)
- Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)
- Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Commun. Pure Appl. Math. 33(2), 199–211 (1980)
- 5. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Differ. Geom. 25(3), 327–351 (1987)