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Abstract For a Riemannian covering M1 → M0 of connected Riemannian manifolds with
respective fundamental groups �1 ⊆ �0, we show that the bottoms of the spectra of M0 and
M1 coincide if the right action of �0 on �1\�0 is amenable.
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1 Introduction

In this article, we study the behaviour under coverings of the bottom of the spectrum of
Schrödinger operators on Riemannian manifolds.

Let M be a connected Riemannian manifold, not necessarily complete, and V : M → R

be a smooth potential with associated Schrödinger operator � + V . We consider � + V as
an unbounded symmetric operator in the space L2(M) of square integrable functions on M
with domain C∞

c (M), the space of smooth functions on M with compact support.
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For a non-vanishing Lipschitz continuous function on M with compact support in M , we
call

R( f ) =
∫

M (|∇ f |2 + V f 2)
∫

M f 2
(1.1)

the Rayleigh quotient of f . We let

λ0(M, V ) = inf R( f ), (1.2)

where f runs through all non-vanishing Lipschitz continuous functions on M with compact
support in M . If λ0(M, V ) > −∞, then � + V is bounded from below on C∞

c (M) and
λ0(M, V ) is equal to the bottom of the spectrum of the Friedrichs extension of � + V . If
λ0(M, V ) = −∞, then the spectrum of any self-adjoint extension of � + V is not bounded
from below.

Recall that�+V is essentially self-adjoint onC∞
c (M) if M is complete and inf V > −∞.

Then the unique self-adjoint extension of � + V is its closure. In the case where M is the
interior of a complete Riemannian manifold N with smooth boundary and where V extends
smoothly to the boundary of N , λ0(M, V ) is equal to the bottom of the Dirichlet spectrum
of � + V on N .

In the case of the Laplacian, that is, V = 0, we also write λ0(M) and call it the bottom
of the spectrum of M . It is well known that λ0(M) is the supremum over all λ ∈ R such
that there is a positive smooth λ-eigenfunction f : M → R (see, e.g., [3, Theorem 7],
[4, Theorem 1], or [5, Theorem 2.1]). It is crucial that these eigenfunctions are not required
to be square-integrable. In fact, λ0(M) is exactly the border between the positive and the L2

spectrum of � (see, e.g., [5, Theorem 2.2]).
Suppose now that M is simply connected and let π0 : M → M0 and π1 : M → M1 be

Riemannian subcovers of M . Let �0 and �1 be the groups of covering transformations of
π0 and π1, respectively, and assume that �1 ⊆ �0. Then the resulting Riemannian covering
π : M1 → M0 satisfies π ◦ π1 = π0. Let V0 : M0 → R be a smooth potential and set
V1 = V0 ◦ π .

Since the lift of a positive λ-eigenfunction of� on M0 to M1 is a positive λ-eigenfunction
of �, we always have λ0(M0) ≤ λ0(M1) by the above characterization of the bottom of the
spectrum of� by positive eigenfunctions. In Sect. 4, we present a short and elementary proof
of the inequality which does not rely on the characterization of λ0 by positive eigenfunctions:

Theorem 1.1 For any Riemannian covering π : M1 → M0 as above,

λ0(M0, V0) ≤ λ0(M1, V1).

Brooks showed in [2, Theorem1] thatλ0(M0) = λ0(M1) in the casewhere M0 is complete,
has finite topological type, and π is normal with amenable group�1\�0 of covering transfor-
mations. Bérard and Castillon extended this in [1, Theorem 1.1] to λ0(M0, V0) = λ0(M1, V1)

in the case where M0 is complete, π1(M0) is finitely generated [this assumption occurs in
point (1) of their Section 3.1], and the right action of�0 on�1\�0 is amenable.We generalize
these results as follows:

Theorem 1.2 If the right action of �0 on �1\�0 is amenable, then

λ0(M0, V0) = λ0(M1, V1).

Here a right action of a countable group � on a countable set X is said to be amenable if
there exists a �-invariant mean on L∞(X). This holds if and only if the action satisfies the
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Følner condition: For any finite subset G ⊆ � and ε > 0, there exists a non-empty, finite
subset F ⊆ X , a Følner set, such that

|F\Fg| ≤ ε|F | (1.3)

for all g ∈ G. By definition, � is amenable if the right action of � on itself is amenable, and
then any action of � is amenable.

In comparison with the results of Brooks, Bérard, and Castillon, the main point of
Theorem 1.2 is that we do not need any assumptions on metric and topology of M0. A
main new point of our arguments is that we adopt our constructions more carefully to the
different competitors for λ0 separately.

2 Fundamental domains and partitions of unity

Choose a complete Riemannian metric h on M0. In what follows, geodesics, distances, and
metric balls in M0, M1, and M are taken with respect to h and its lifts to M1 and M ,
respectively.

Fix a point x in M0. For any y ∈ π−1(x), let

Dy = {z ∈ M1 | d(z, y) ≤ d(z, y′) for all y′ ∈ π−1(x)} (2.1)

be the fundamental domain of π centered at y. Then Dy is closed in M1, the boundary ∂ Dy

of Dy has measure zero in M1, and π : Dy\∂ Dy → M0\C is an isometry, where C is a
subset of the cut locus Cut(x) of x in M0. Recall that Cut(x) is of measure zero. Moreover,
M1 = ∪y∈π−1(x) Dy , y ∈ π−1(x).

Lemma 2.1 For any ρ > 0, there is an integer N (ρ) such that any z in M1 is contained in
at most N (ρ) metric balls B(y, ρ), y ∈ π−1(x).

Proof Let z ∈ B(y1, ρ) ∩ B(y2, ρ) with y1 �= y2 in π−1(x) and γ1, γ2 : [0, 1] → M1

be minimal geodesics from y1 to z and y2 to z, respectively. Then σ1 = π ◦ γ1 and
σ2 = π ◦ γ2 are geodesic segments from x to π(z). Since y1 �= y2, σ1 and σ2 are not
homotopic relative to {0, 1}. Hence, if z lies in in the intersection of n pairwise different balls
B(yi , ρ) with y1, . . . , yn ∈ π−1(x), then the concatenations σ−1

1 ∗ σi represent n pairwise
different homotopy classes of loops at x of length at most 2ρ. Hence n is at most equal to the
number N (ρ) of homotopy classes of loops at x with representatives of length at most 2ρ. ��
Lemma 2.2 If K ⊆ M0 is compact, then π−1(K ) ∩ Dy is compact. More precisely, if
K ⊆ B(x, r), then π−1(K ) ∩ Dy ⊆ B(y, r).

Proof Choose r > 0 such that K ⊆ B(x, r). Let z ∈ π−1(K ) ∩ Dy and γ0 be a minimal
geodesic from π(z) ∈ K to x . Let γ be the lift of γ0 to M1 starting in z. Then γ is a minimal
geodesic from z to some point y′ ∈ π−1(x). Since z ∈ Dy , this implies

d(z, y) ≤ d(z, y′) ≤ L(γ ) = L(γ0) < r.

Hence π−1(K ) ∩ Dy ⊆ B(y, r). ��
Let K ⊆ M0 be a compact subset and choose r > 0 such that K ⊆ B(x, r). Letψ : R → R

be the function which is equal to 1 on (−∞, r ], to t + 1 − r for r ≤ t ≤ r + 1, and to 0
on [r + 1,∞]. For y ∈ π−1(x), let ψy = ψy(z) = ψ(d(z, y)). Note that ψy = 1 on
π−1(K ) ∩ Dy and that suppψy = B̄(y, r + 1).
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1032 W. Ballmann et al.

Lemma 2.3 Any z in M1 is contained in the support of at most N (r + 1) of the functions
ψy , y ∈ π−1(x).

Proof This is clear from Lemma 2.1 since suppψy is contained in the ball B(y, r + 1). ��

In particular, each point of M1 lies in the support of only finitely many of the functions
ψy . Therefore the functionψ1 = max{1−∑

ψy, 0} is well defined. By Lemma 2.2, we have
suppψ1 ∩ π−1(K ) = ∅. Together with ψ1, the functions ψy lead to a partition of unity on
M1 with functions ϕ1 and ϕy , y ∈ π−1(x), given by

ϕ1 = ψ1

ψ1 + ∑
z∈π−1(x) ψz

and ϕy = ψy

ψ1 + ∑
z∈π−1(x) ψz

. (2.2)

Note that suppϕ1 = suppψ1 and suppϕy = suppψy for all y ∈ π−1(x).

Lemma 2.4 The functions ϕy , y ∈ π−1(x), are Lipschitz continuous with Lipschitz constant
3N (r + 1).

Proof The functionsψy , y ∈ π−1(x), are Lipschitz continuous with Lipschitz constant 1 and
take values in [0, 1]. Henceψ1 is Lipschitz continuouswith Lipschitz constant N = N (r +1),
by Lemma 2.3, and takes values in [0, 1]. Therefore the denominatorχ = ψ1+∑

z∈π−1(x) ψz

in the fraction defining the ϕy is Lipschitz continuous and takes values in [1, N ]. Hence

|ϕy(z1) − ϕy(z2)| ≤ |(χ(z2) − χ(z1))ψy(z1) + χ(z1)(ψy(z1) − ψy(z2))|
χ(z1)χ(z2)

≤ (2N + N )d(z1, z2)

χ(z1)χ(z2)
≤ 3Nd(z1, z2).

��

As a consequence of Lemma 2.4, we get that ϕ1 = 1−∑
ϕy is also Lipschitz continuous

with Lipschitz constant 6N (r + 1)2.

3 Pulling up

Let f be a non-vanishing Lipschitz continuous function on M0 with compact support and let
f1 = f ◦ π . We will construct a cutoff function χ on M1 such that R(χ f1) is close to R( f ).
Let g be the given Riemannianmetric on M0 and h be a complete background Riemannian

metric on M0 as in Sect. 2. Then there is a constant A ≥ 1 such that

A−1g ≤ h ≤ Ag (3.1)

on the support of f . We continue to take distances and metric balls in M0, M1, and M with
respect to h and its respective lifts to M1 and M .

Fix a point x in M0.With K = supp f and r > 0 such that K ⊆ B(x, r), we get a partition
of unity with functions ϕ1 and ϕy , y ∈ π−1(x), as above.

Fix preimages u ∈ M and y = π1(u) ∈ M1 of x under π0 and π , respectively. Write
π−1
0 (x) = �0u as the union of�1-orbits�1gu, where g runs through a set R of representatives

of the right cosets of �1 in �0, that is, of the elements of �1\�0. Then π−1(x) = {π1(gu) |
g ∈ R}. Let
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On the bottom of spectra under coverings 1033

S = {s ∈ R | d(y, π1(su)) ≤ 2r + 2}
= {s ∈ R | d(u, tsu) ≤ 2r + 2 for some t ∈ �1},

T = {t ∈ �1 | d(u, tsu) ≤ 2r + 2 for some s ∈ S},
G = T S ⊆ �0.

Since the fibres of π and π0 are discrete, S and T are finite subsets of �0, hence also G.
Let ε > 0 and F ⊆ �1\�0 be a Følner set for G and ε satisfying (1.3). Let

P = {g ∈ R | �1g ∈ F} ⊆ R

and set
χ =

∑

g∈P

ϕπ1(gu).

Since |P| = |F | < ∞, suppχ is compact. Hence, by Lemma 2.4,χ f1 is compactly supported
and Lipschitz continuous on M1. Let

Q = {y ∈ π−1(x) | (χ f1)(z) �= 0 for some z ∈ Dy}.
To estimate the Rayleigh quotient of χ f1, it suffices to consider χ f1 on the union of the Dy ,
y ∈ Q. We first observe that

P1 = {π1(gu) | g ∈ P} ⊆ Q.

To show this, let y = π1(gu) and observe that f1 does not vanish identically on π−1(K )∩ Dy

and that ϕy is positive on π−1(K )∩ Dy . Since R is a set of representatives of the right cosets
of �1 in �0, there exists a one-to-one correspondence between P and P1, and hence

|P| = |P1| ≤ |Q|.
The problematic subset of Q is

Q− = {y ∈ Q | 0 < χ(z) < 1 for some z ∈ π−1(K ) ∩ Dy}.
Let now y ∈ Q− and z ∈ π−1(K ) ∩ Dy with 0 < χ(z) < 1. Since π1(gu), g ∈ R,
runs through all points of π−1(x), we have

∑
g∈R ϕπ1(gu)(z) = 1. Hence there are

g1, . . . , gk ∈ R\P such that ϕπ1(gi u)(z) �= 0 and

χ(z) +
∑

ϕπ1(gi u)(z) = 1.

Furthermore, there has to be a g ∈ P with ϕπ1(gu)(z) �= 0. Then the supports of the functions
ϕπ1(gu) and ϕπ1(gi u) intersect and we get d(π1(gu), π1(gi u)) ≤ 2r + 2. That is, we have
d(gu, hi gi u) ≤ 2r + 2 for some hi ∈ �1. We conclude that

d(u, g−1hi gi u) = d(gu, hi gi u) ≤ 2r + 2.

Since π1 is distance non-increasing, we get that there are si ∈ S and ti ∈ T such that
g−1hi gi = ti si , and then hi gi = gti si . Since gi /∈ P , we conclude that �1gti si /∈ F , i.e.,
�1g ∈ F\F(ti si )

−1. Since (ti si )
−1 ∈ G, there are at most ε|F ||G| such elements g ∈ P .

Since d(y, z) ≤ r and d(z, π1(gu)) ≤ r + 1, we conclude with Lemma 2.1 that for fixed
g ∈ P there are at most N (2r + 1) such y ∈ Q. We conclude that

|Q−| ≤ ε|F ||G|N (2r + 1)

= ε|P||G|N (2r + 1) ≤ ε|Q||G|N (2r + 1).
(3.2)
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We now estimate the Rayleigh quotient of χ f1. For any y ∈ Q+ = Q\Q−, we have χ = 1
on π−1(K ) ∩ Dy and therefore

∫

Dy

{|∇(χ f1)|2 + V1(χ f1)
2} =

∫

Dy

{|∇ f1|2 + V1 f 21 }

=
∫

M0

{|∇ f |2 + V0 f 2}

and ∫

Dy

χ2 f 21 =
∫

Dy

f 21 =
∫

M0

f 2,

where, here and below, integrals, gradients, and norms are taken with respect to the original
Riemannian metric g on M .

For any y ∈ Q−, we have
∫

Dy

χ2 f 21 ≤
∫

M0

f 2 and
∫

Dy

|V1|χ2 f 21 ≤ C0

∫

M0

f 2,

where C0 is the maximum of |V0| on supp f = K . By Lemma 2.3, Lemma 2.4, and (3.1),
we have |∇χ |2 ≤ 9N (r + 1)4A on the support of f . Therefore

∫

Dy

|∇(χ f1)|2 ≤ 2
∫

Dy

{|∇χ |2 f 2 + χ2|∇ f ◦ π |2|}

≤ 18N (r + 1)4A
∫

M0

f 2 + 2
∫

M0

|∇ f |2.

In conclusion, ∫

Dy

{|∇(χ f1)|2 + |V1|χ2 f 21 } ≤ C

for any y ∈ Q−, where C > 0 is an appropriate constant, which depends on f , but not on y
or the choice of ε and F . With D = |G|N (2r + 1), we obtain from (3.2) that

|Q−| ≤ εD

1 − εD
|Q+|,

and conclude that

R(χ f1) =
∫ {|∇(χ f1)|2 + V1χ

2 f 21 }
∫
(χ f1)2

=
∑

y∈Q

∫
Dy

{|∇ f1|2 + V1 f 21 }
∑

y∈Q

∫
Dy

f 21

≤
∑

y∈Q+
∫

Dy
{|∇ f1|2 + V1 f 21 } + εC D|Q+|/(1 − εD)

∑
y∈Q+

∫
Dy

f 21

=
∫

M0
{|∇ f |2 + V0 f 2} + εC D/(1 − εD)

∫
M0

f 2

= R( f ) + εC D

(1 − εD)
∫

M0
f 2

.

For ε → 0, the right hand side converges to R( f ).
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On the bottom of spectra under coverings 1035

Proof of Theorem 1.2 By Theorem 1.1, we have λ0(M0, V0) ≤ λ0(M1, V1). By (1.2), the
bottom of the spectrum of Schrödinger operators is given by the infimum of correspond-
ing Rayleigh quotients R( f ) of Lipschitz continuous functions with compact support. The
arguments above show that, for any such function f on M0 and any δ > 0, there is a
Lipschitz continuous function χ f1 on M1 with compact support and Rayleigh quotient at
most R( f ) + δ. Therefore we also have λ0(M0, V0) ≥ λ0(M1, V1). ��

4 Pushing down

Let f be a Lipschitz continuous function on M1 with compact support. Define the push down
f0 : M0 → R of f by

f0(x) =
⎛

⎝
∑

y∈π−1(x)

f (y)2

⎞

⎠

1/2

.

Since supp f is compact, the sum on the right hand side is finite for all x ∈ M0, and hence f0
is well defined. We have supp f0 = π(supp f ), and hence supp f0 is compact. Furthermore,
f0 is differentiable at each point x , where f is differentiable at all y ∈ π−1(x) and f (y) �= 0
for some y ∈ π−1(x), and then

∇ f0(x) = 1

f0(x)

∑

y∈π−1(x)

f (y)π∗(∇ f (y)).

For the norm of the differential of f0 at x , we get

|∇ f0(x)|2 ≤ 1

f0(x)2

∣
∣
∣
∣
∣
∣

∑

y∈π−1(x)

f (y)π∗(∇ f (y))

∣
∣
∣
∣
∣
∣

2

≤ 1

f0(x)2

∑

y∈π−1(x)

f (y)2
∑

y∈π−1(x)

|∇ f (y)|2

=
∑

y∈π−1(x)

|∇ f (y)|2.

Furthermore, f0 is differentiable with vanishing differential at almost any point of { f0 = 0}.
Therefore f0 is Lipschitz continuous and

∫

M0

f 20 =
∫

M1

f 2,
∫

M0

V0 f 20 =
∫

M1

V1 f 2,
∫

M0

|∇ f0|2 ≤
∫

M1

|∇ f |2.

In particular, we have R( f0) ≤ R( f ).

Proof of Theorem 1.1 For any non-vanishing Lipschitz continuous function f on M1 with
compact support, the push down f0 as above is a Lipschitz continuous function on M0 with
compact support and Rayleigh quotient R( f0) ≤ R( f ). The asserted inequality follows now
from the characterization of the bottom of the spectrum by Rayleigh quotients as in (1.2). ��
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5 Final remarks

It iswell-known that any countable group is the fundamental group of a smooth four-manifold.
(A variant of the usual argument for finitely presented groups, taking connected sums of
S1 × S3 and performing surgeries, can be used to produce five-manifolds with fundamental
group any countable group.) In particular, for a non-finitely generated, amenable group G,
e.g., G = ⊕

n∈N Z or G = Q, there is a smooth manifold M with π1(M) ∼= G. In contrast
to the results in [1,2], our main result also applies to such examples.

Moreover, we do not assume λ0(M0, V0) > −∞. Given any non-compact manifold M0,
it is indeed easy to construct a smooth potential V0 such that λ0(M0, V0) = −∞. In fact, it
suffices that V0(x) tends to −∞ sufficiently fast as x → ∞.

Acknowledgements Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bérard, P., Castillon, P.: Spectral positivity and Riemannian coverings. Bull. Lond. Math. Soc. 45(5),
1041–1048 (2013)

2. Brooks, R.: The bottom of the spectrum of a Riemannian covering. J. Reine Angew. Math. 357, 101–114
(1985)

3. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications.
Commun. Pure Appl. Math. 28(3), 333–354 (1975)

4. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of
nonnegative scalar curvature. Commun. Pure Appl. Math. 33(2), 199–211 (1980)

5. Sullivan, D.: Related aspects of positivity in Riemannian geometry. J. Differ. Geom. 25(3), 327–351 (1987)

123

http://creativecommons.org/licenses/by/4.0/

	On the bottom of spectra under coverings
	Abstract
	1 Introduction
	2 Fundamental domains and partitions of unity
	3 Pulling up
	4 Pushing down
	5 Final remarks
	Acknowledgements
	References




